经模拟滤波后,模拟信号被采样并转换成数字值,因为数字域仅包含有限的字长,若要用它来表示连续信号,就要引入量化误差,量化误差为±0.5LSB。因为一个N位的ADC的输入范围被分成2N个离散的数值,每一个数值由一个N位的二进制数表示,所以,ADC的输入范围和字长N是量化误差的一个直接表示,也是分辨率的一个直接表示。代表数字值的字长决定了信噪比,因此通过增加信噪比可以增加转换的分辨率。加入三角波信号可提高信噪比(详见TI公司的资料:Oversampling Techniques Using theTMS320C24x Family,June 1998)。
如果输入信号在两个量化步长q1与q0之间,则它将被量化成q1或q0。当增加一个适当的三角波信号,并高速采样,将会量化出一系列的q1与q0,这两个值出现的比例就代表了此输入信号在两个量化步长之间的相对位置。要应用这种方法得到比较好的效果,三角波信号的幅度必须为(n+0.5)LSB,其中,n=0,1,2,...。
因为有了高采样速率,输入信号的变化相对来说比较缓慢,图2中,输入信号为0.6 LSB,一个典型的AD转换器将采样这个信号并把它转换成1 LSB。当用一个三角波信号与此输入信号进行叠加,并高速采样时,转换器产生一系列的0或1采样值。0和1出现的比例就表示了这个在0和1 LSB之间的实际值。 图2中的采样因子K为16,采样值为0.563,得到了比原转换结果更小的量化误差。使用三角波调制过采样技术所增加的信噪比可以表示为:

用该法产生的信噪比和分辨率的增加见表1。
使用增加三角波信号的过采样每加一倍过采样速率,就可以增加6 dB的分辨率。然而这种方法需要输入信号与三角波信号不相关,如果不能做到这一点,那信号在一个过采样周期内变化不能超过±0.5 LSB。